
Schneller, besser, kostengünstiger: Systemkompetenz Industrie 4.0

Dr. Reinhard Ploss Vorstandsvorsitzender Infineon Technologies AG Wien, 3. April 2014

Industrielle Kompetenz: Europa verfügt über gewachsene Strukturen

Erster mechanischer Webstuhl

1784

1. Industrielle Revolution

durch Einführung mechanischer Produktionsanlagen mit Hilfe von Wasser- und Dampfkraft

Ende

18. Jahrhundert

Source: DFKI (2011)

Erstes Fließband, Schlachthöfe von Cincinnati

1870

2. Industrielle Revolution

durch Einführung arbeitsteiliger Massenproduktion mit Hilfe von elektrischer Energie

Beginn 20. Jahrhundert

Erste speicherprogrammierbare Steuerung (SPS), Modicon 084

1969

3. Industrielle Revolution

durch Einsatz von Elektronik und IT zur weiteren Automatisierung der Produktion

Beginn 70er Jahre 20. Jahrhundert

4. Industrielle Revolution

auf Basis von Cyber-Physical Systems

heute

Europa im globalen Wettbewerb: Andere Regionen holen auf

Handelsblatt

19.02.2014

Einfacher, billiger, leichter

Chinesische Firmen erobern den Maschinenbau. Die deutsche Vorzeigebranche ist alarmiert.

25.03.2014

Deutscher Großanlagenbau spürt asiatische Konkurrenz

VDMA: Wir müssen mehr Gesamtverantwortung übernehmen

Differenzierungs-Potenziale

- Kosten
- Time to Market
- Performance
- Individualisierung
- Flexibilität
- Service

auchen endlich langfristige Plaherheit", fordert Knauthe.

gewachsen sind die Aufträge der ksbauer im Inland 2013 nur mit 1 großen Windfarmprojekten um ent auf 4,5 Milliarden Euro. Ein Kraftwerksmarkt in der Heimat r wichtig, um der vielleicht größsusforderung im Ausland begegkönnen. Gerade große Projekte inerien oder Chemiefabriken wereinigen Jahren immer häufiger anischen Wettbewerbern an sich die als Komplettanbieter mit en Angebotspreisen punkten könerklärt zu einem guten Teil, wardeutsche Großanlagenbau heute Drittel weniger Auftragsvolumen als vor fünf Jahren. Zwar zeigt vischen, dass die Koreaner nicht umsetzen können wie verspro ber wenn sie sich verkalkuliert had das von aggressiven Chinesen siert", sagt Knauthe

Druck zwinge die deutschen Aner dazu, ebenfalls wieder Gesamtrtung für große Projekte zu übereine Strategie, die sie in den Jahr eher aufgegeben haben. Rund Kitzphaite baschäftigen die Aust-

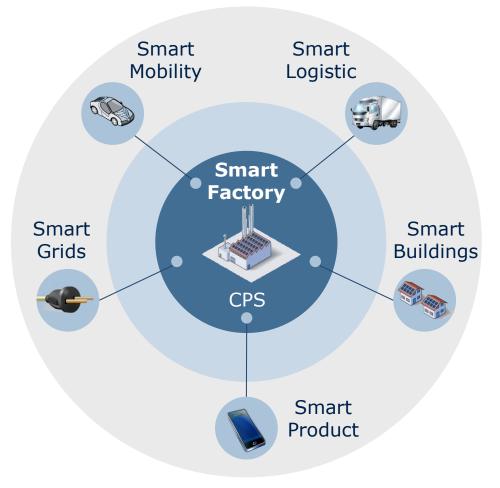
Industrie 4.0: Erfolg durch klare Zielsetzung und umfassende Kompetenzen

Zielsetzungen

- Make to order Losgröße "1"
- Idea to Market Integrierte Entwicklung + Fertigung schnell und kostengünstig
- Schnelles Lernen und Aufbau von Wissen
- Steigerung Produktivität Auslastung, Maschinenlaufzeit Ausbeuten, Materialverbrauch

Anforderungen

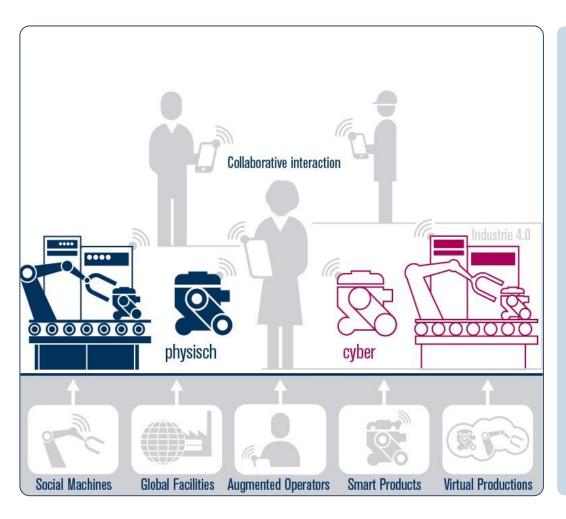
- Vernetzte Wertschöpfungskette in/von F&E und Produktion
- Methoden und Tools Wertestrom und Daten managen und analysieren: Algorithmen, IT)
- Vollautomatisierte Anlagen 3D-Printing
- Simulation: F&E und ProduktionIdea Virtual Reality Reality


Rahmenbedingungen

- Zuverlässige Kommunikation: Datenintegrität, Echtzeitfähigkeit, Infrastruktur auf globaler Basis
- Know-how-Schutz
- Ausbildung

Industrie 4.0: Das Internet der Dinge kommt in die Fabrik

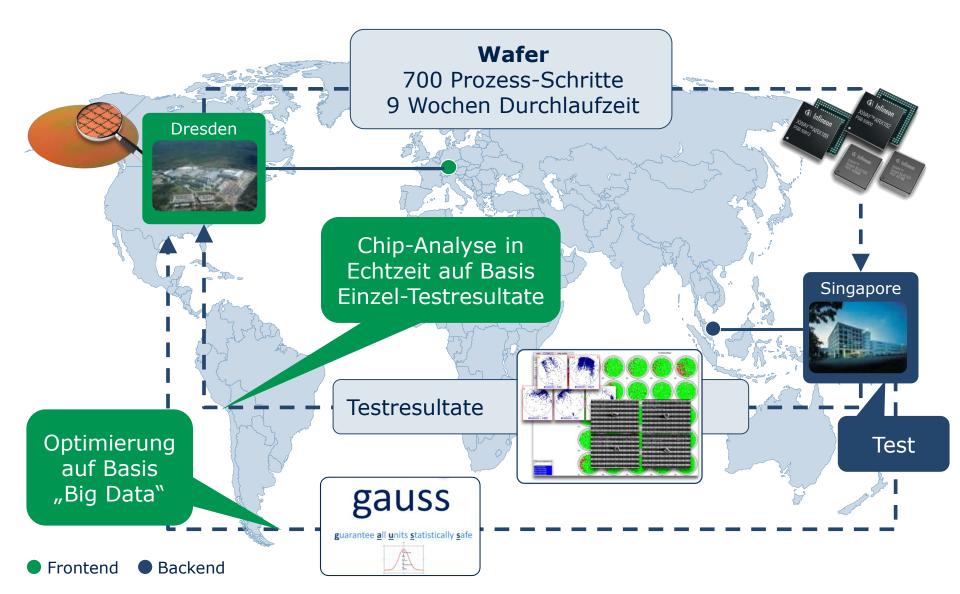
Internet der Dienste


Internet der Dinge

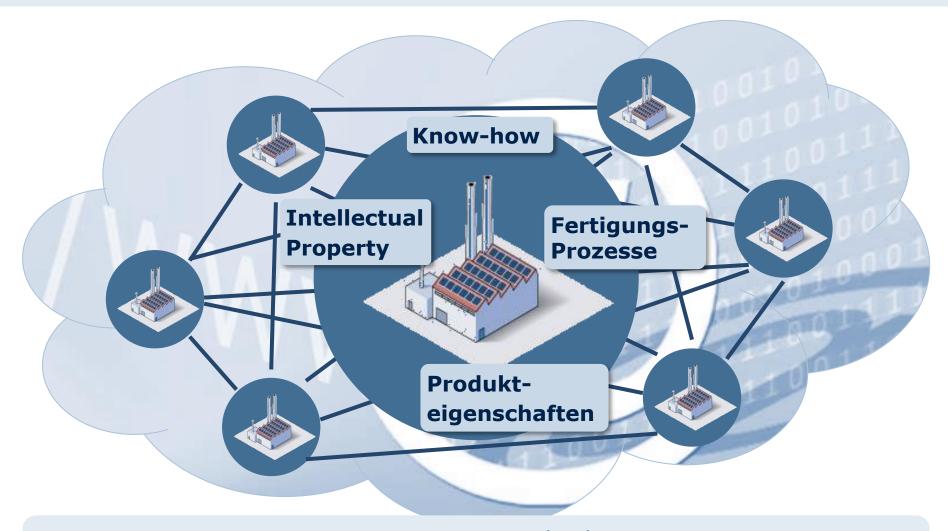
Smart Factory: intelligente Produkte, Verfahren und Prozesse

- Cyber-Physical-Systems ermöglichen die intelligente Fabrik
- Intelligente Produkte unterstützen aktiv den Produktionsprozess
- An ihren Schnittstellen wird die Smart Factory zum Bestandteil einer intelligenten Infrastruktur

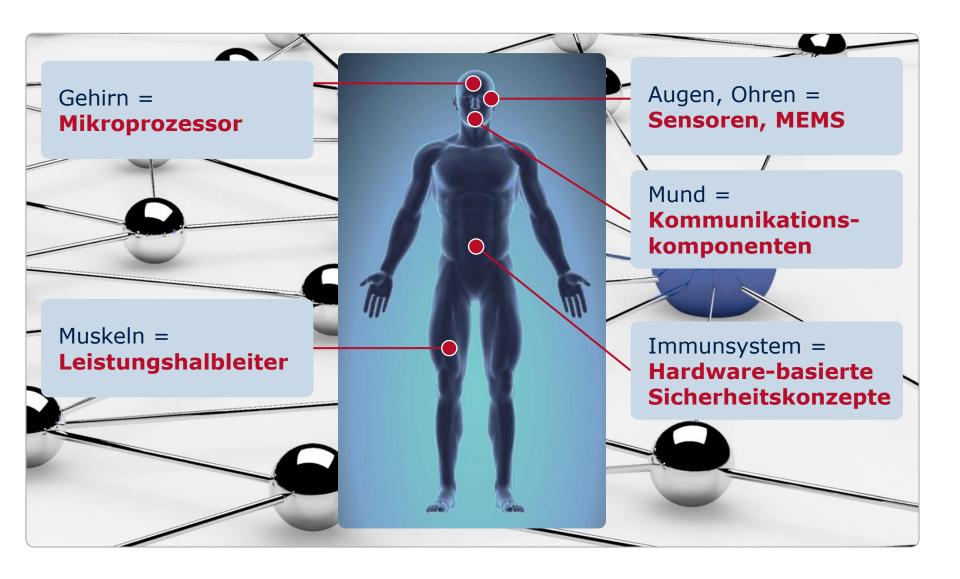
Smart Factory: Maschinen kommunizieren miteinander



- Produkte eindeutig identifizierbar und jederzeit lokalisierbar
- Wertschöpfungsnetzwerke sind in Echtzeit verknüpft
- Beherrschung der Komplexität
- Robust gegen Störungen
- Gesteigerte Effizienz bei der Produktion


Big Data & Kommunikation in Echtzeit: Schnelleres Lernen und Optimierung

Vernetzte Produktion: Industrie 4.0 erfordert hohe Sicherheitsstandards



Gesamtsystem Sicherheit Authentifizierung – Verschlüsselung – Schutz – Zertifizierung

Mikroelektronik: Zentrale Aufgaben im komplexen System Industrie 4.0

Europas Stärke: Jahrzehntelange Erfahrung in der Beherrschung komplexer Systeme

Erfolgsfaktoren: Was braucht Europa jetzt für Industrie 4.0?

- Gemeinsame Anstrengung zur Reindustrialisierung Europas und Modernisierung der Produktionswirtschaft
- Entwicklung und Ausbau von Know-how und Kompetenzen
- Definition von Sicherheitsstandards für Hardware und Software
- Nutzung vorhandener Kompetenzen wie die jahrzehntelange Erfahrung bei der Beherrschung komplexer Systeme
- Staatliche F\u00f6rderung von Forschungs- und Innovationsvorhaben
- Intensivere Zusammenarbeit von Wissenschaft, Wirtschaft und Politik
- Bündelung aller Kräfte anstelle nationaler Einzellösungen

Fazit: Europa hat das Potenzial, Leitmarkt und Leitanbieter für Industrie 4.0 zu werden.

ENERGY EFFICIENCY MOBILITY SECURITY

Innovative semiconductor solutions for energy efficiency, mobility and security.

